On the analytic property of local resolvent;
关于局部豫解式的解析性
First we prove that 0 is an eigenvalue of the operator with geometric multiplicity one,next we prove that all points on the imaginary axis except for zero belong to the resolvent set of the operator,last we prove that 0 is an eigenvalue of the adjoint operator of the operator.
首先证明0是对应于该排队模型的主算子的几何重数为1的特征值,其次证明在虚轴上除了0以外其他所有点都属于该算子的豫解集,然后证明0是该主算子共轭算子的特征值。
First we consider the spectral properties of the operator corresponding to this system and obtain that all points on the imaginary axis except for zero belong to resolvent set of the operator, zero is an eigenvalue of the operator and its adjoint operator with geometric multiplicity one.
先讨论了对应于该系统的主算子的谱特征并且得到了在虚轴上除了0点外其它所有点都属于该主算子的豫解集,0是该主算子及其共轭算子几何重数为1的特征值。
First we prove that all points on the imaginary axis except for zero belong to the resolvent set of the operator corresponding to the model, second prove that 0 is an eigenvalue of the operator and its adjoint operator with geometric multiplicity and algebraic multiplicity one,last by using theabove results we obtain that the time-dependent solution of the model str.
首先证明在虚轴上除了0以外其他所有点都属于该算子的豫解集,其次证明0是对应于该系统的主算子及其共轭算子的几何与代数重数为1的特征值,由此推出该系统的时间依赖解当时刻趋向于无穷时强收敛于系统的稳态解。
CopyRight © 2020-2024 在线英语词典[www.yycidian.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024103067号