solvable

基本解释可解的

网络释义

1)solvable,可解的2)sufficient and necessary condition for solvability,可解的充要条件3)Solvable restricted Lie superalgebras,可解的限制李超代数4)unsolvable algebra equation by radicals,根式不可解的代数方程5)solvable,可解6)solvability,可解

用法和例句

In the present paper,we investigate solvable radicals and Hopkins nilpotent radicals for Lie triple systems and prove that both radicals are invariant under actions of deriva- tions.

本文讨论李三系的可解根基和Hopking幂零的某些性质及导子作用下的不变性,讨论了李三系次理想的某些性质,证明了李三系为幂零的当且仅当每个子系都是次理想。

After giving the concept and some elementary properties of subideals of Lie triple system,the author shows that every subalgebra of a nilpotent Lie triple systems is a subideal and a Lie triple system is solvable if every subalgebra is a subideal.

证明了幂零李三系的子系数都是次理想;当李三系的所有子系数都是次理想时,该李三系是可解的

This paper discusses the influence of the θ-pairs associted to a famity of special maximal subgroups of a group on the group and establishes some necessary and sufficient conditions for a group to be solvable.

讨论有限群的一类特殊极大子群的θ-子群偶对该群可解性的影响,得到若干充要条件,推广了该方面已有的一些结论。

In this paper,we research the effect of c-normality on supersolvablity and solvability,and get some good results:if M is a normal subgroup of G and every sylow subgroup of M is c-niomal in G, then G is supersolvable;let M be normal and maximal in G, if every subgroup of prime order is c-normal in G,and every Frattini subgroup of sylow subgroups in G is 1.

我们运用C-正规性质来刻画群的可解性和超可解性,并得到了一些很好的结论:设M为群G的一个极大子群,若M的任一Sylow子群在G中C-正规,则G超可解;MG,且为G之极大子群,M的每一个素数阶子群在G中C-正规及M的任何Sylow子群的Frattini子群为1,则G超可解。

We get some results about the solvability of G.

一个群G的子群H被称为CAP-子群,若它满足H或是覆盖或是避开G的每一个主因子,群G的子群H被称为半CAP-子群,若它满足H或是覆盖或是避开G的某个固定主群列的每一个主因子,本文通过假定群G的某些子群为CAP-子群或半CAP-子群,给出了群的可解性的某些刻画。

The solvability and nilpotency of Novikov algebras are discussed.

讨论了Novikov代数的幂零性和可解性,得到了可解理想之和可解,可解Novikov代数的子代数和同态象可解等结论,以及与之相联系的李代数的可解幂零性的关系。

最新行业英语

行业英语

单词索引:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
短语索引:
ABCDEFGHIJKLMNOPQRSTUVWXYZ

CopyRight © 2020-2024 在线英语词典[www.yycidian.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024103067号