williams landel ferry equation

基本解释wlf 方程

网络释义

1)williams landel ferry equation,wlf 方程2)wlf equation,wlf 方程3)WLF equation,WLF方程4)WLF-like function,类WLF方程5)WLF equation,WLF公式6)WLF[Williams-Lendel-Ferry] equation,WLF公式7)Wilson loop functional (WLF),Wilson圈泛函(WLF)8)Flow Analysis,Cross-WLF粘度模型9)equation,方程10)equations,方程

用法和例句

The temperature dependence of glass transition does not obey the general Arrhenius equation, on the other hand, WLF equation can be considered as a special temperature dependence of glass transition of polymer with segment motion.

基于聚合物玻璃化转变的定义,探讨了聚合物宏观单晶体和聚合物单链单晶的玻璃化转变问题,指出玻璃化转变的温度依赖性不服从普适的Arrhenius方程,可以把WLF方程看作是聚合物玻璃化转变的特有温度依赖关系。

Based on microcosmic segmental motion, WLF equation suit for the appropriate temperature in polymer physics was analyzed.

 分析了高分子物理中WLF方程的适用温度范围。

According to WLF equation and free volume theory respectively, the relationship between damping property and frequency is abtained.

从时温等效原理出发,依据WLF方程和自由体积理论推导了一个较为简单的将高分子材料的温度谱转变为频率谱的方法。

Study on the equation of scale-inhibiting efficiency of polyaspartic acid;

聚天冬氨酸阻垢效能方程的研究

A modified equation for correlating experimental data——nonintegral power polynomial equation;

拟合实验数据的新方程——非整数幂多项式方程

At first,the limitation of the general heat conduction equation is discussed and then,nonlinear heat conduction equations are derived,when we consider that thermal conductivity,specific heat capacity and density are dependent of temperature.

研究了线性情形中热传导方程的局限性,在此基础上考虑到热传导方程中导热系数、比热容、密度与温度的关系,导出了非线性热传导方程,并求出了几类非线性热传导方程的孤波解。

In a polynomial system of equations (PS)=0,let m>0 be the number of equations,and n>0 be the number of variables.

设一个多项式方程组中的方程个数为m >0 ,变元个数为n>0 ,该文在m=n的基组结式消元法的基础上 ,针对m ≥n的情况 ,建立了相应的理论 ,构造了新的消元步骤。

A mathematical model of parametric equations of theoretical and practical tooth profiles is established.

提出并分析了偏心轮推杆行星传动的传动原理 ,建立了理论齿廓和实际齿廓方程 ;证明了定传动比 ,采用不同的安装方式 ,可得到 6种不同的传动

最新行业英语

行业英语

单词索引:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
短语索引:
ABCDEFGHIJKLMNOPQRSTUVWXYZ

CopyRight © 2020-2024 在线英语词典[www.yycidian.com]版权所有 All Rights Reserved. ICP备案号:浙ICP备2024103067号